Arduino-Pico Documentation
Release 1.0.0

Earle F. Philhower, llI

Jun 24, 2022

1 Getting Help and Contributing

2 Installation

2.1 Installing via Arduino Boards Manager

22 InstallingviaGIT

2.3 Installing both Arduino and CMake

24 Uploading Sketches

2.5 Windows 7 Driver Notes

2.6 Windows 7 Installation Problems

2.7 Uploading Filesystem Images

2.8 Uploading Sketches with Picoprobe

2.9 Uploading Sketches with pico-debug

2.10 Debugging with Picoprobe/pico-debug, OpenOCD, and GDB
3 IDE Menus

31 Model.o

32 FlashSize.

33 CPUSpeed

3.4 Debug Port and Debug Level

3.5 Generic RP2040 Support

3.6 Boot Stage 2 Options for Generic RP2040

4 Using this core with PlatformIO
What is PlatformIO?
Current state of development

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

Deprecation warnings
Selecting the new core

Flashsize
CPUSpeed
DebugPort
DebugLevel
C++Exceptions oL
Stack Protector L
RTTT
USBStack
Selecting a different core version
Examples L o oo,
Debugging

Filesystem Uploading

CONTENTS:

()

O O 000001 131N L

13

......................... 13

10

11

12

13

14

15

16

17

18

19

Pin Assignments

T N
5.2 Seriall (UARTO), Serial2 (UART1)
5.3 SPI(SPIO), SPII1 (SPI1)
54 Wire (I2C0), Wirel (I12C1)
Pad Strength

Analog I/0

7.1 AnalogInput
7.2 AnalogOutputs.
7.3 Analog Output Restrictions . . .
Digital I/O

8.1 Board-Specific Pins
8.2 Tone/noTone
EEPROM Library

9.1 EEPROMClass API
9.2 EEPROM Examples
12S (Digital Audio) Audio Library
10.1 I2SClassAPI
10.2 Sample Writing/Reading API . .
10.3 Note About 24-bit Samples . . .

Serial Ports (USB and UART)
“SoftwareSerial” PIO-based UART
SoftwareSerial Emulation

Servo Library

SPI (Serial Peripheral Interface)
Wire (I2C Master and Slave)

File Systems

17.1 Flash Layout
17.2 Compatible Filesystem APIs . . .

17.3 LittleFS File System Limitations

17.4 Uploading Files to the LittleFS File System

17.5 SD Library Information

17.6 File system object (LittleFS/SD/SDES) o o

17.7 Filesystem information structure

17.8 Directory object (Dir)
17.9 Fileobject

USB (Arduino and Adafruit_TinyUSB)
18.1 Pico SDK USB Support
18.2 Adafruit TinyUSB Arduino Support

Multicore Processing

19.1 PausingCores

19.2 Communicating Between Cores

23
23
23
23
24

25

27
27
27
28

29
29
29

31
31
32

33
33
35
36

37

39

41

43

45

20

21

22

23

FreeRTOS SMP

20.1 Enabling FreeRTOS
20.2 Configuration and Predefined Tasks
203 Caveats
20.4 More Information

Libraries Ported/Optimized for the RP2040

Using the Raspberry Pi Pico SDK (PICO-SDK)

22.1 Included SDK
22.2 Multicore (CORE1) Processing

22.3 PIOASM (Compiling for the PIO processors)

Licensing and Credits

63
63
63
63
64

65

67
67
67
68

69

Arduino-Pico Documentation, Release 1.0.0

This is the documentation for the Raspberry Pi Pico Arduino core, Arduino-Pico. Arduino-Pico is a community port
of the RP2040 (Raspberry Pi Pico processor) to the Arduino ecosystem, intended to make it easier and more fun to use
and program the Raspberry Pi Pico / RP2040 based boards.

This Arduino core uses a custom toolset with GCC 10.2 and Newlib 4.0.0 and doesn’t require any system-installed
prerequisites.

For the latest version, always check https://github.com/earlephilhower/arduino-pico

CONTENTS: 1

https://github.com/earlephilhower/arduino-pico

Arduino-Pico Documentation, Release 1.0.0

2 CONTENTS:

CHAPTER
ONE

GETTING HELP AND CONTRIBUTING

This is a community supported project and has multiple ways to get assistance. Posting complete details, in a polite
and organized way will get the best response.

For bugs in the Core, or to submit patches, please use the GitHub Issues or GitHub Pull Requests

For general questions/discussions use either GitHub Discussions or live-chat with gitter.im

https://github.com/earlephilhower/arduino-pico/issues
https://github.com/earlephilhower/arduino-pico/pulls
https://github.com/earlephilhower/arduino-pico/discussions
https://gitter.im/arduino-pico/community

Arduino-Pico Documentation, Release 1.0.0

4 Chapter 1. Getting Help and Contributing

CHAPTER
TWO

INSTALLATION

The Arduino-Pico core can be installed using the Arduino IDE Boards Manager or using git. If you want to simply
write programs for your RP2040 board, the Boards Manager installation will suffice, but if you want to try the latest
pre-release versions and submit improvements, you will need the giz instllation.

2.1 Installing via Arduino Boards Manager

Note for Windows Users: Please do not use the Windows Store version of the actual Arduino application because it
has issues detecting attached Pico boards. Use the “Windows ZIP” or plain “Windows” executable (EXE) download
direct from https://arduino.cc. and allow it to install any device drivers it suggests. Otherwise the Pico board may not
be detected. Also, if trying out the 2.0 beta Arduino please install the release 1.8 version beforehand to ensure needed
device drivers are present.

1. Open up the Arduino IDE and go to File->Preferences.

2. In the dialog that pops up, enter the following URL in the “Additional Boards Manager URLs” field: https:
//github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json

https://arduino.cc
https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json
https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json

Arduino-Pico Documentation, Release 1.0.0

B Preferences

Settings | Netwaork

Sketchbook location:

/home/earle/Arduino Browse
Editor lanauaae: Systermn Default | ¥/ [(reauires restart of Arduinol
Editor font size: 12
Interface scale: ™ Automatic % (reauires restart of Arduino)

Theme: Default theme | ¥ (reauires restart of Arduino!

Show verbose outout durina: & compilation upload

Compiler warninas: All .4

[] Display line numbers & Enable Code Folding

& Verify code after upload [Use external editor

Check for updates on startup & save when verifying or uploading

[Use accessibility features

Additional Boards Manaager URLs:

More preferences can be edited directly in the file
fhome/fearle/.arduino15/oreferences. txt

(edit onlv when Arduino is not runnina)

OK | | Cancel

3. Hit OK to close the dialog.
4. Go to Tools->Boards->Board Manager in the IDE

5. Type “pico” in the search box and select “Add”:

x Boards Manager

Tvoe Al il lD\CO‘]

Raspberry Pi Pico/RP2040 -
by Earle F. Philhower, III version 0.9.0 INSTALLED

Boards included in this package:

Raspberry Pi Pico,

More Info

Remove

2.2 Installing via GIT

To install via GIT (for latest and greatest versions):

mkdir -p ~/Arduino/hardware/pico

git clone https://github.com/earlephilhower/arduino-pico.git ~/Arduino/hardware/pico/
—~Irp2040

cd ~/Arduino/hardware/pico/rp2040

git submodule update --init

cd pico-sdk
git submodule update --init
cd ../tools

python3 ./get.py

6 Chapter 2. Installation

Arduino-Pico Documentation, Release 1.0.0

2.3 Installing both Arduino and CMake

Tom’s Hardware presented a very nice writeup on installing arduino-pico on both Windows and Linux, available at
Tom’s Hardware .

If you follow their step-by-step you will also have a fully functional CMake-based environment to build Pico apps on
if you outgrow the Arduino ecosystem.

2.4 Uploading Sketches

To upload your first sketch, you will need to hold the BOOTSEL button down while plugging in the Pico to your
computer. Then hit the upload button and the sketch should be transferred and start to run.

After the first upload, this should not be necessary as the arduino-pico core has auto-reset support. Select the appro-
priate serial port shown in the Arduino Tools->Port->Serial Port menu once (this setting will stick and does not need to
be touched for multiple uploads). This selection allows the auto-reset tool to identify the proper device to reset. Them
hit the upload button and your sketch should upload and run.

In some cases the Pico will encounter a hard hang and its USB port will not respond to the auto-reset request. Should
this happen, just follow the initial procedure of holding the BOOTSEL button down while plugging in the Pico to enter
the ROM bootloader.

2.5 Windows 7 Driver Notes

Windows 10, Linux, and Mac will all support the Pico CDC/ACM USB serial port automatically. However, Windows
7 may not include the proper driver and therefore no detect the Pico for automatic uploads or the Serial Monitor.

For Windows 7, if this occurs, you can use Zadig <https://zadig.akeo.ie/> to install the appropriate driver. Select the
USB ID of 2E8A and use the USB Serial (CDC) driver.

rg-_‘, Zadig (=]]

Device QOptions Help

|Board CDC (Interface 0) - | [Edit
Driver usbser (v1.0.0.0) USB Serial (COC) = More Information
WinlJSB {ibusb}
USEID ZEBA 0005 00 libusb-win32
;= Upgrade Driver = libusbl
wcm: X WinUSE (Microsoft

4 devices found.

2.3. Installing both Arduino and CMake 7

https://www.tomshardware.com/how-to/program-raspberry-pi-pico-with-arduino-ide

Arduino-Pico Documentation, Release 1.0.0

2.6 Windows 7 Installation Problems

When running MalwareBytes antivirus (or others) the scanner may lock the compiler or other toolchain executables,
causing installation or build failures. (Thanks to @ Andy2No)

Symptoms include:

*Access denied during update in the boards manager - affects the .exe files, because MalwareBytes has locked them. *
Access denied during compilation, to one of the .exe files - same reason. * Can’t delete the .exe files - they’re locked
by MalwareBytes.

A workaround is possible, involving setting the toolchain as an “excluded directory” and reinstalling.
1. In MalwareBytes Settings, click the Exclusions tab. Add an exclusion for the equivalent of this folder path:

C:\Users{YOUR_USERNAME_HERE}\AppData\Local\Arduinol5\packages\rp2040\tools\pgt-gcc\1.1.
0-a-81al771

2. Reboot to unlock the files.
3. Do the boards manager installation / upgrade again.

4. Set the board type, e.g. to Raspberry Pi Pico and check it can compile.

2.7 Uploading Filesystem Images

The onboard flash filesystem for the Pico, LittleFS, lets you upload a filesystem image from the sketch directory for
your sketch to use. Download the needed plugin from

* https://github.com/earlephilhower/arduino-pico-littlefs-plugin/releases
To install, follow the directions in

* https://github.com/earlephilhower/arduino-pico-littlefs-plugin/blob/master/README.md
For detailed usage information, please check the repo documentation available at

* https://arduino-pico.readthedocs.io/en/latest/fs.html

2.8 Uploading Sketches with Picoprobe

If you have built a Raspberry Pi Picoprobe, you can use OpenOCD to handle your sketch uploads and for debugging
with GDB.

Under Windows a local admin user should be able to access the Picoprobe port automatically, but under Linux udev
must be told about the device and to allow normal users access.

To set up user-level access to Picoprobes on Ubuntu (and other OSes which use udev):

echo 'SUBSYSTEMS=="usb", ATTRS =="2e8a", ATTRS =="0004", GROUP="users
", MODE="0666"" | sudo tee -a /etc/udev/rules.d/98-PicoProbe.rules
sudo udevadm control --reload

The first line creates a file with the USB vendor and ID of the Picoprobe and tells UDEV to give users full access to
it. The second causes udev to load this new rule. Note that you will need to unplug and re-plug in your device the first
time you create this file, to allow udev to make the device node properly.

8 Chapter 2. Installation

https://github.com/earlephilhower/arduino-pico-littlefs-plugin/releases
https://github.com/earlephilhower/arduino-pico-littlefs-plugin/blob/master/README.md
https://arduino-pico.readthedocs.io/en/latest/fs.html

Arduino-Pico Documentation, Release 1.0.0

Once Picoprobe permissions are set up properly, then select the board “Raspberry Pi Pico (Picoprobe)” in the Tools
menu and upload as normal.

2.9 Uploading Sketches with pico-debug

pico-debug differs from Picoprobe in that pico-debug is a virtual debug pod that runs side-by-side on the same RP2040
that you run your code on; so, you only need one RP2040 board instead of two. pico-debug also differs from Picoprobe in
that pico-debug is standards-based; it uses the CMSIS-DAP protocol, which means even software not specially written
for the Raspberry Pi Pico can support it. pico-debug uses OpenOCD to handle your sketch uploads, and debugging can
be accomplished with CMSIS-DAP capable debuggers including GDB.

Under Windows and macQOS, any user should be able to access pico-debug automatically, but under Linux udev must
be told about the device and to allow normal users access.

To set up user-level access to all CMSIS-DAP adapters on Ubuntu (and other OSes which use udev):

echo 'ATTRS =="*CMSIS-DAP*", MODE="664", GROUP="plugdev"' | sudo tee -a /etc/
—udev/rules.d/98-CMSIS-DAP.rules
sudo udevadm control --reload

The first line creates a file that recognizes all CMSIS-DAP adapters and tells UDEV to give users full access to it. The
second causes udev to load this new rule. Note that you will need to unplug and re-plug in your device the first time
you create this file, to allow udev to make the device node properly.

Once CMSIS-DAP permissions are set up properly, then select the board “Raspberry Pi Pico (pico-debug)” in the Tools
menu.

When first connecting the USB port to your PC, you must copy pico-debug-gimmecache.uf2 to the Pi Pico to load
pico-debug into RAM; after this, upload as normal.

2.10 Debugging with Picoprobe/pico-debug, OpenOCD, and GDB

The installed tools include a version of OpenOCD (in the pqt-openocd directory) and GDB (in the pqt-gcc directory).
These may be used to run GDB in an interactive window as documented in the Pico Getting Started manuals from the
Raspberry Pi Foundation. For pico-debug, replace the raspberrypi-swd and picoprobe example OpenOCD arguments of
“-f interface/raspberrypi-swd.cfg -f target/rp2040.cfg” or “-f interface/picoprobe.cfg -f target/rp2040.cfg” respectively
in the Pico Getting Started manual with “-f board/pico-debug.cfg”.

2.9. Uploading Sketches with pico-debug 9

Arduino-Pico Documentation, Release 1.0.0

10 Chapter 2. Installation

CHAPTER
THREE

IDE MENUS

3.1 Model

Use the boards menu to select your model of RP2040 board. There will be two options: Boardname and Boardname
(Picoprobe). If you want to use a Picoprobe to upload your sketches and not the default automatic UF2 upload, use the
(Picoprobe) option, otherwise use the normal name. No functional or code changes are done because of this.

There is also a Generic board which allows you to individually select things such as flash size or boot2 flash type. Use
this if your board isn’t yet fully supported and isn’t working with the normal Raspberry Pi Pico option.

3.2 Flash Size

Arduino-Pico supports onboard filesystems which will set aside some of the flash on your board for the filesystem,
shrinking the maximum code size allowed. Use this menu to select the desired ratio of filesystem to sketch.

3.3 CPU Speed

While it is unsupported, the Raspberry Pi Pico RP2040 can often run much faster than the stock 125MHz. Use the CPU
Speed menu to select a desired over or underclock speed. If the sketch fails at the higher speed, hold the BOOTSEL
while plugging it in to enter update mode and try a lower overclock.

3.4 Debug Port and Debug Level

Debug messages from printf and the Core can be printed to a Serial port to allow for easier debugging. Select the
desired port and verbosity. Selecting a port for debug output does not stop a sketch from using it for normal operations.

3.5 Generic RP2040 Support

If your RP2040 board isn’t in the menus you can still use it with the IDE bu using the Board->Generic RP2040 menu
option. You will need to then set the flash size (see above) and tell the IDE how to communicate with the flash chip
using the Tools->Boot Stage 2 menu.

11

Arduino-Pico Documentation, Release 1.0.0

3.6 Boot Stage 2 Options for Generic RP2040

The Arduino Pico needs to set up its internal flash interface to talk to whatever flash chip is in the system. While all
flash chips support a basic (and slow) 1-bit operation using common timings, each different brand (and sometimes
model) of flash chip require custom timings to work in QSPI (4-bit) mode. The Boot Stage 2 menu lets you select from
the supported timings.

The options with /2 in them divide the system clock by 2 to drive the bus. Options with /4 divide the clock by 4 and so
are slower but more compatible.

If you can’t match a chip name in the menu to your flash chip, a simple test can be run to determine which is correct.
Simpily load the Blink example, select the first option in the Boot Stage 2 menu, and upload. If that works, note it and
continue. Iterate through the options and note which ones work. If an option doesn’t work, unplug the chip and hold
the BOOTSEL button down while re-inserting it to enter the ROM uploader mode. (The CPU and flash will not be
harmed if the test fails.)

If one of the custom bootloaders (not Generic SPI /2 or /4) worked, use that option to get best performance. If none
worked other than the Generic SPI /2 or /4 then use that. The /2 options of all models is preferred as it is faster, but
some boards do require /4 on the custom chip interfaces.

When in doubt, Generic SPI /4 should work with any flash chip but is slow.

12 Chapter 3. IDE Menus

CHAPTER
FOUR

USING THIS CORE WITH PLATFORMIO

4.1 What is PlatformlO?

PlatformlIO is a free, open-source build-tool written in Python, which also integrates into VSCode code as an extension.

PlatformIO significantly simplifies writing embedded software by offering a unified build system, yet being able to
create project files for many different IDEs, including VSCode, Eclipse, CLion, etc. Through this, PlatformIO can
offer extensive features such as IntelliSense (autocomplete), debugging, unit testing etc., which not available in the
standard Arduino IDE.

The Arduino IDE experience:

13

https://platformio.org/

Arduino-Pico Documentation, Release 1.0.0

) raspbi_blink | Arduino 1.8.13 — O x
Datei Bearbeiten Sketch Werkzeuge Hilfe

rasphi_blink §
int led = PIN_LEL; ~

vold setup() |
pinMods {led, CUTFUT);
Serial.begin{l15200);
}

void loop()
Serial.println("Test™);
digitalWrice (led, HIGH); S/ turn the LED on

delay (200} ; S/ walt for a second

digitalWrite (led, LOW); S/ turn the LED off

delay (200) 7 S/ walit for a second
i

des dynamische

Generic RP2040 auf COM3

The PlatformIO experience:

14 Chapter 4. Using this core with PlatformlO

Arduino-Pico Documentation, Release 1.0.0

] Fle Edit Selection View Go Run Terminal Help

main.cpp M @
- PROJECT TASKS
» &1 Default
pico
General
Build

= ad

setup() {
pinMode(led, OUTPUT);
Upload Serial.begin(1152608);
Moni

nd Monitor

Toop() {
Serial.println("Test");
digitalWrite(led, HIGH);
delay(208);
digitalWrite(led, L

ed delay(208);

lemote Development Serial.prﬂ

~ Platform
O Build Filesystem Image

oad Filesystem Image

nt

ntf

ntf P

ntFloat

ntln size t arduino::Print::println(char)+13 0.
t 260479936 Fi o, ntNumber
Checking size .pi ntULLNumber

~ QUICK ACCESS Advanced Memory U () parselnt

~ PIO Home RAM: [1 2.7% (used 7316 bytes from 278336 ‘ B

Flash: [=] 6.2% (used 64476 bytes from 184448 #% PlatformlO: B... /
Building .pio\build\pico\firmware.bin

55] Took 4.75 seconds

 Configuration Terminal will be reused by tasks, press any key to close

¥ P main* <& Python38664bit ®OA20 @ v > W § @1 env:pico (earle_raspbi) C++ Platforml0 & [2

Refer to the general documentation at https://docs.platformio.org/.
Especially useful is the Getting started with VSCode + PlatformIO, CLI reference and the platformio.ini options page.

Hereafter it is assumed that you have a basic understanding of PlatformIO in regards to project creation, project file
structure and building and uploading PlatformIO projects, through reading the above pages.

4.2 Current state of development

At the time of writing, PlatformIO integration for this core is a work-in-progress and not yet merged into mainline
PlatformIO. This is subject to change once this pull request is merged.

If you want to use the PlatformlIO integration right now, make sure you first create a standard Raspberry Pi Pico +
Arduino project within PlatformlIO. This will give you a project with the platformio.ini

[env:pico]

platform = raspberrypi
board = pico

framework = arduino

Here, you need to change the platform to take advantage of the features described hereunder and switch to the new core.

4.2. Current state of development 15

https://docs.platformio.org/
https://docs.platformio.org/en/latest/integration/ide/vscode.html#installation
https://docs.platformio.org/en/latest/core/index.html
https://docs.platformio.org/en/latest/projectconf/index.html
https://github.com/platformio/platform-raspberrypi/pull/36

Arduino-Pico Documentation, Release 1.0.0

[env:pico]

platform = https://github.com/maxgerhardt/platform-raspberrypi.git
board = pico

framework = arduino

board_build.core = earlephilhower

When the support for this core has been merged into mainline PlatformIO, this notice will be removed and a standard
platformio.ini as shown above will work as a base.

4.3 Deprecation warnings

Previous versions of this documentation told users to inject the framework and toolchain package into the project by
using

; note that download link for toolchain is specific for 0S. see https://github.com/

—earlephilhower/pico-quick-toolchain/releases.

platform_packages =
maxgerhardt/framework-arduinopico@https://github.com/earlephilhower/arduino-pico.git
maxgerhardt/toolchain-pico@https://github.com/earlephilhower/pico-quick-toolchain/

—releases/download/1.3.1-a/x86_64-w64-mingw32.arm-none-eabi-7855b0c.210706.zip

This is now deprecated and should not be done anymore. Users should delete these platform_packages lines and
update the platform integration by issuing the command

pio pkg update -g -p https://github.com/maxgerhardt/platform-raspberrypi.git

in the PlatformIO CLI. The same can be achieved by using the VSCode PIO Home -> Platforms -> Updates GUI.

The toolchain, which was also renamed to toolchain-rp2040-earlephilhower is downloaded automatically from
the registry. The same goes for the framework-arduinopico toolchain package, which points directly to the Arduino-
Pico Github repository. However, users can still select a custom fork or branch of the core if desired so, as detailed in
a chapter below.

4.4 Selecting the new core

Prerequisite for using this core is to tell PlatformIO to switch to it. There will be board definition files where the Earle-
Philhower core will be the default since it’s a board that only exists in this core (and not the other https://github.com/
arduino/ArduinoCore-mbed). To switch boards for which this is not the default core (which are only board = pico
and board = nanorp2040connect), the directive

board_build.core = earlephilhower

must be added to the platformio.ini. This controls the core switching logic.

When using Arduino-Pico-only boards like board = rpipico or board = adafruit_feather, this is not needed.

16 Chapter 4. Using this core with PlatformlO

https://docs.platformio.org/en/latest/integration/ide/vscode.html#platformio-core-cli
https://github.com/arduino/ArduinoCore-mbed
https://github.com/arduino/ArduinoCore-mbed
https://github.com/maxgerhardt/platform-raspberrypi/blob/77e0d3a29d1dbf00fd3ec3271104e3bf4820869c/builder/frameworks/arduino/arduino.py#L27-L32

Arduino-Pico Documentation, Release 1.0.0

4.5 Flash size

Controlled via specifying the size allocated for the filesystem. Available sketch size is calculated accordingly
by using (as in makeboards.py) that number and the (constant) EEPROM size (4096 bytes) and the total flash
size as known to PlatformIO via the board definition file. The expression on the right can involve “b”,’k”,”m”
(bytes/kilobytes/megabytes) and floating point numbers. This makes it actually more flexible than in the Arduino
IDE where there is a finite list of choices. Calculations happen in the platform.

; in reference to a board = pico config (2MB flash)
; Flash Size: 2MB (Sketch: 1MB, FS:1MB)
board_build.filesystem_size = 1Im

; Flash Size: 2MB (No FS)
board_build.filesystem_size = Om

; Flash Size: 2MB (Sketch: 0.5MB, FS:1.5MB)
board_build.filesystem_size = 1.5m

4.6 CPU Speed

As for all other PlatformlIO platforms, the £_cpu macro value (which is passed to the core) can be changed as docu-
mented

; 133MHz
board_build.f_cpu = 133000000L

4.7 Debug Port

Via build_flags as done for many other cores (example).

; Debug Port: Serial

build_flags = -DDEBUG_RP2040_PORT=Serial
; Debug Port: Serial 1

build_flags = -DDEBUG_RP2040_PORT=Seriall
; Debug Port: Serial 2

build_flags = -DDEBUG_RP2040_PORT=Serial2

4.8 Debug Level

Done again by directly adding the needed build flags. When wanting to define multiple build flags, they must be
accumulated in either a sing line or a newline-separated expression.

; Debug level: Core

build_flags = -DDEBUG_RP2040_CORE
; Debug level: SPI

build_flags = -DDEBUG_RP2040_SPI
; Debug level: Wire

build_flags = -DDEBUG_RP2040_WIRE
; Debug level: All

(continues on next page)

4.5. Flash size 17

https://github.com/maxgerhardt/platform-raspberrypi/blob/77e0d3a29d1dbf00fd3ec3271104e3bf4820869c/builder/main.py#L118-L184
https://docs.platformio.org/en/latest/boards/raspberrypi/pico.html#configuration
https://docs.platformio.org/en/latest/boards/raspberrypi/pico.html#configuration
https://docs.platformio.org/en/latest/projectconf/section_env_build.html#build-flags
https://docs.platformio.org/en/latest/platforms/ststm32.html#configuration
https://github.com/earlephilhower/arduino-pico/blob/05356da2c5552413a442f742e209c6fa92823666/boards.txt#L104-L114

Arduino-Pico Documentation, Release 1.0.0

(continued from previous page)

build_flags = -DDEBUG_RP2040_WIRE -DDEBUG_RP2040_SPI -DDEBUG_RP2040_CORE
; Debug level: NDEBUG
build_flags = -DNDEBUG

; example: Debug port on serial 2 and all debug output
build_flags = -DDEBUG_RP2040_WIRE -DDEBUG_RP2040_SPI -DDEBUG_RP2040_CORE -DDEBUG_RP2040_
—PORT=Serial2
; equivalent to above
build_flags =
-DDEBUG_RP2040_WIRE
-DDEBUG_RP2040_SPI
-DDEBUG_RP2040_CORE
-DDEBUG_RP2040_PORT=Serial2

4.9 C++ Exceptions

Exceptions are disabled by default. To enable them, use

; Enable Exceptions
build_flags = -DPIO_FRAMEWORK_ARDUINO_ENABLE_EXCEPTIONS

4.10 Stack Protector

To enable GCC'’s stack protection feature, use

; Enable Stack Protector
build_flags = -fstack-protector

4.11 RTTI

RTTI (run-time type information) is disabled by default. To enable it, use

; Enable RTTI
build_flags = -DPIO_FRAMEWORK_ARDUINO_ENABLE_RTTI

4.12 USB Stack

Not specifying any special build flags regarding this gives one the default Pico SDK USB stack. To change it, add

; Adafruit TinyUSB

build_flags = -DUSE_TINYUSB

; No USB stack

build_flags = -DPIO_FRAMEWORK_ARDUINO_NO_USB

18 Chapter 4. Using this core with PlatformlO

Arduino-Pico Documentation, Release 1.0.0

Note that the special “No USB” setting is also supported, through the shortcut-define
PIO_FRAMEWORK_ARDUINO_NO_USB.

4.13 Selecting a different core version

If you wish to use a different version of the core, e.g., the latest git master version, you can use a platform_packages
directive to do so. Simply specify that the framework package (framework-arduinopico) comes from a different
source.

platform_packages =
framework-arduinopico@https://github.com/earlephilhower/arduino-pico.git#master

Whereas the #master can also be replaced by a #branchname or a #commithash. If left out, it will pull the default
branch, which is master.

The file:// and symlink:// pseudo-protocols can also be used instead of https:// to point to a local copy of
the core (with e.g. some modifications) on disk (see documentation).

Note that this can only be done for versions that have the PlatformlIO builder script it in, so versions before 1.9.2 are
not supported.

4.14 Examples

The following example platformio.ini can be used for a Raspberry Pi Pico and 0.5MByte filesystem.

[env:pico]

platform = https://github.com/maxgerhardt/platform-raspberrypi.git
board = pico

framework = arduino

; board can use both Arduino cores -- we select Arduino-Pico here
board_build.core = earlephilhower

board_build.filesystem_size = 0.5m

The initial project structure should be generated just creating a new project for the Pico and the Arduino framework,
after which the auto-generated platformio.ini can be adapted per above.

4.15 Debugging

With recent updates to the toolchain and OpenOCD, debugging firmwares is also possible.
To specify the debugging adapter, use debug_tool (documentation). Supported values are:
¢ picoprobe
e cmsis-dap
e jlink
e raspberrypi-swd

These values can also be used in upload_protocol if you want PlatformIO to upload the regular firmware through
this method, which you likely want.

4.13. Selecting a different core version 19

https://docs.platformio.org/en/latest/projectconf/section_env_platform.html#platform-packages
https://docs.platformio.org/en/latest/core/userguide/pkg/cmd_install.html?#local-folder
https://docs.platformio.org/en/latest/projectconf/section_env_debug.html#debug-tool

Arduino-Pico Documentation, Release 1.0.0

Especially the PicoProbe method is convenient when you have two Raspberry Pi Pico boards. One of them can be
flashed with the PicoProbe firmware (documentation) and is then connected to the target Raspberry Pi Pico board
(see documentation chapter ‘“Picoprobe Wiring”). Remember that on Windows, you have to use Zadig to also load
“WinUSB” drivers for the “Picoprobe (Interface 2)” device so that OpenOCD can speak to it.

With that set up, debugging can be started via the left debugging sidebar and works nicely: Setup breakpoints, inspect
the value of variables in the code, step through the code line by line. When a breakpoint is hit or execution is halted,
you can even see the execution state both Cortex-MO+ cores of the RP2040.

) File Edit Selection View Go Run Terminal Help main.cpp - Untitled (Workspace) - Visual Studi

RUN G [> PIO Debug (pic~ §8 - main.cpp X
~ VARIABLES
> Local

~ Global

~ WATCH
; loop() ff
Serial.printf(
delay(10€@);

~ CALL STACK
PAUSED OM BREAKPOINT

1

Serial.printf("C1: R

PAUSED loopi() {
Serial.printf({"C1
delay(50@);

sré\maincpp 22

corel_wrapper PROBLEMS DEBUG CONSOLE

* BREAKPOINTS
¥ main.cpp pi
» PERIPHERALS
REGISTERS
MEMORY

U > DISASSEMBLY >

P master & ®0A0 £ PIODebug(picomerge) @ > W © [] 8] Default (pico_merge) TabSize:4 UTF-8 CRLF C++ Platomlo & [2

For further information on customizing debug options, like the initial breakpoint or debugging / SWD speed, consult
the documentation.

4.16 Filesystem Uploading

For the Arduino IDE, a plugin is available that enables a data folder to be packed as a LittleFS filesystem binary and
uploaded to the Pico.

This functionality is also built-in in the PlatformIO integration. Open the project tasks and expand the “Platform” tasks:

20 Chapter 4. Using this core with PlatformlO

https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html#debugging-using-another-raspberry-pi-pico
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://zadig.akeo.ie/
https://docs.platformio.org/en/latest/projectconf/section_env_debug.html
https://github.com/earlephilhower/arduino-pico#uploading-filesystem-images
https://docs.platformio.org/en/latest/integration/ide/vscode.html#project-tasks

Arduino-Pico Documentation, Release 1.0.0

PLATFORMIO
~ PROJECT TASKS
@] Default

s @1 pico

~ B General
Build
Upload
Monitor
Upload and Monitor

Clean

o
o
o
o
o
o

Clean All
~ B3 Platform
O Build Filesystem Image
@ O Upload Filesystem Image
> B3 Advanced

> B3 Remote Development

The files you want to upload should be placed in a folder called data inside the project. This can be customized if
needed.

The task “Build Filesystem Image” will take all files in the data directory and create a 1ittlefs.bin file from it using
the mklittlefs tool.

The task “Upload Filesystem Image” will upload the filesystem image to the Pico via the specified upload_protocol.

4.16. Filesystem Uploading 21

https://docs.platformio.org/en/latest/projectconf/section_platformio.html#data-dir
https://docs.platformio.org/en/latest/projectconf/section_platformio.html#data-dir

Arduino-Pico Documentation, Release 1.0.0

22 Chapter 4. Using this core with PlatformlO

CHAPTER
FIVE

PIN ASSIGNMENTS

The Raspberry Pi Pico has an incredibly flexible I/O configuration and most built-in peripherals (except for the ADC)
can be used on multiple sets of pins. Note, however, that not all peripherals can use all I/Os. Refer to the RP2040
datasheet or an online pinout diagram for more details.

Additional methods have been added to allow you to select a peripheral’s I/O pins before calling ::begin. This is
especially helpful when using third party libraries: the library doesn’t need to be modified, only your own code in
setup() is needed to adjust pinouts.

5.1 12S

::setBCLK(pin)
::setDOUT (pin)

5.2 Serial1 (UARTO), Serial2 (UART1)

::setRX(pin)
::setTX(pin)
::setRTS(pin)
::setCTS(pin)

5.3 SPI (SPI0), SPI1 (SPI1)

1 :setSCK(pin)
::setCS(pin)
::setRX(pin)
c:setTX(pin)

23

Arduino-Pico Documentation, Release 1.0.0

5.4 Wire (12C0), Wire1 (12C1)

::setSDA(pin)
::setSCL(pin)

For example, because the SD library uses the SPI library, we can make it use a non-default pinout with a simple call

void setup() {
SPI.setRX(4);
SPI.setTX(7);
SPI.setSCK(6);
SPI.setCS(5);
SD.begin(5);

24 Chapter 5. Pin Assignments

CHAPTER
SIX

PAD STRENGTH

The Raspberry Pi Pico has the ability to set the current that a pin (actually the pad associated with it) is capable of
supplying. The current can be set to values of 2mA, 4mA, 8mA and 12mA. By default, on a reset, the setting is
4mA. A pinMode(x, OUTPUT), where x is the pin number, is also the default setting. 4 settings have been added for
use with pinMode: OUTPUT_2MA, OUTPUT_4MA, which has the same behavior as OUTPUT, OUTPUT_8MA and
OUTPUT_I2MA.

25

Arduino-Pico Documentation, Release 1.0.0

26 Chapter 6. Pad Strength

CHAPTER
SEVEN

ANALOG I/O

7.1 Analog Input

For analog inputs, the RP2040 device has a 12-bit, 4-channel ADC + temperature sensor available on a fixed set of pins
(AO...A3). The standard Arduino calls can be used to read their values (with 3.3V nominally reading as 4095).

7.1.1 int analogRead(pin_size_t pin = A0..A3)

Returns a value from 0. ..4095 correspionding to the ADC reading of the specific pin.

7.1.2 void analogReadResolution(int bits)

Determines the resolution (in bits) of the value returned by the analogRead() function. Default resolution is 10bit.

7.1.3 float analogReadTemp()

Returns the temperature, in Celsius, of the onboard thermal sensor. This reading is not exceedingly accurate and of
relatively low resolution, so it is not a replacement for an external temperature sensor in many cases.

7.2 Analog Outputs

The RP2040 does not have any onboard DACs, so analog outputs are simulated using the standard method of using
pulse width modulation (PWM) using the RP20400’s hardware PWM units.

While up to 16 PWM channels can be generated, they are not independent and there are significant restrictions as to
allowed pins in parallel. See the RP2040 datasheet for full details.

27

https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf

Arduino-Pico Documentation, Release 1.0.0

7.3 Analog Output Restrictions

The PWM generator source clock restricts the legal combinations of frequency and ranges. For example, at IMHz
only about 6 bits of range are possible. When you define an analogWriteFreq and analoglriteRange that can’t be
fulfilled by the hardware, the frequency will be preserved but the accuracy (range) will be reduced automatically. Your
code will still send in the range you specify, but the core itself will transparently map it into the allowable PWN range.

7.3.1 void analogWriteFreq(uint32_t freq)

Sets the master PWM frequency used (i.e. how often the PWM output cycles). From 100Hz to IMHz are supported.

7.3.2 void analogWriteRange(uint32_t range) and analogWriteResolution(int res)

These calls set the maximum PWM value (i.e. writing this value will result in a PWM duty cycle of 100%)/ either
explicitly (range) or as a power-of-two (res). A range of 16 to 65535 is supported.

7.3.3 void analogWrite(pin_size_t pin, int val)

Writes a PWM value to a specific pin. The PWM machine is enabled and set to the requested frequency and scale, and
the output is generated. This will continue until a digitalWrite or other digital output is performed.

28 Chapter 7. Analog I/O

CHAPTER
EIGHT

DIGITAL I/O

8.1 Board-Specific Pins

The Raspberry Pi Pico RP2040 chip supports up to 30 digital I/O pins, however not all boards provide access to all
pins.

8.2 Tone/noTone

Simple square wave tone generation is possible for up to 8 channels using Arduino standard tone calls. Because these
use the PIO to generate the waveform, they must share resources with other calls such as I2S or Servo objects.

29

Arduino-Pico Documentation, Release 1.0.0

30 Chapter 8. Digital I/O

CHAPTER
NINE

EEPROM LIBRARY

While the Raspberry Pi Pico RP2040 does not come with an EEPROM onboard, we simulate one by using a single 4K
chunk of flash at the end of flash space.

Note that this is a simulated EEPROM and will only support the number of writes as the onboard flash chip,
not the 100,000 or so of a real EEPROM. Therefore, do not frequently update the EEPROM or you may prematurely
wear out the flash.

9.1 EEPROM Class API

9.1.1 EEPROM.begin(size=256...4096)

Call before the first use of the EEPROM data for read or write. It makes a copy of the emulated EEPROM sector in
RAM to allow random update and access.

9.1.2 EEPROM.read(addr), EEPROM[addr]

Returns the data at a specific offset in the EEPROM. See EEPROM.get later for a more

9.1.3 EEPROM.write(addr, data), EEPROM[addr] = data

Writes a byte of data at the offset specified. Not persisted to flash until EEPROM. commit () is called.

9.1.4 EEPROM.commit()

Writes the updated data to flash, so next reboot it will be readable.

9.1.5 EEPROM.end()

EEPROM. commit () and frees all memory used. Need to call EEPROM.begin() before the EEPROM can be used again.

31

Arduino-Pico Documentation, Release 1.0.0

9.1.6 EEPROM.get(addr, val)

Copies the (potentially multi-byte) data in EEPROM at the specific byte offset into the returned value. Useful for
reading structures from EEPROM.

9.1.7 EEPROM.put(addr, val)

Copies the (potentially multi-byte) value into EEPROM a the byte offset supplied. Useful for storing struct in EEP-
ROM. Note that any pointers inside a written structure will not be valid, and that most C++ objects like String cannot
be written to EEPROM this way because of it.

9.1.8 EEPROM.length()

Returns the length of the EEPROM (i.e. the value specified in EEPROM.begin()).

9.2 EEPROM Examples

Three EEPROM “examples<https://github.com/earlephilhower/arduino-pico/tree/master/librariess EEPROM>" _
are included.

32 Chapter 9. EEPROM Library

CHAPTER
TEN

I12S (DIGITAL AUDIO) AUDIO LIBRARY

While the RP2040 chip on the Raspberry Pi Pico does not include a hardware I2S device, it is possible to use the PIO
(Programmable 1/O) state machines to implement one dynamically.

Digital audio input and output are supported at 8, 16, 24, and 32 bits per sample.

Theoretically up to 6 I12S ports may be created, but in practice there may not be enough resources (DMA, PIO SM) to
actually create and use so many.

Create an 12S port by instantiating a variable of the I12S class specifying the direction. Configure it using API calls
below before using it.

10.1 12S Class API

10.1.1 12S(OUTPUT)

Creates an 125 output port. Needs to be connected up to the desired pins (see below) and started before any output can
happen.

10.1.2 12S(INPUT)

Creates an I2S input port. Needs to be connected up to the desired pins (see below) and started before any input can
happen.

10.1.3 bool setBCLK(pin_size_t pin)

Sets the BCLK pin of the 12S device. The LRCLK/word clock will be pin + 1 due to limitations of the PIO state
machines. Call this before I2S: :begin()

10.1.4 bool setDATA(pin_size_t pin)

Sets the DOUT or DIN pin of the I2S device. Any pin may be used. Call before I2S: :begin()

33

Arduino-Pico Documentation, Release 1.0.0

10.1.5 bool setBitsPerSample(int bits)

Specify how many bits per audio sample to read or write. Note that for 24-bit samples, audio samples must be left-
aligned (i.e. bits 31...8). Call before I2S: :begin()

10.1.6 bool setBuffers(size_t buffers, size_t bufferWords, int32_t silenceSample =
0)

Set the number of DMA buffers and their size in 32-bit words as well as the word to fill when no data is available to
send to the I2S hardware. Call before I2S: :begin().

10.1.7 bool setFrequency(long sampleRate)

Sets the word clock frequency, but does not start the I2S device if not already running. May be called after
I2S::begin() to change the sample rate on-the-fly.

10.1.8 bool begin()/begin(long sampleRate)

Start the 12S device up with the given sample rate, or with the value set using the prior setFrequency call.

10.1.9 void end()

Stops the 125 device.

10.1.10 void flush()

Waits until all the I12S buffers have been output.

10.1.11 size_t write(uint8_t/int8_t/int16_t/int32_t)

Writes a single sample of bitsPerSample to the buffer. It is up to the user to keep track of left/right channels. Note
this writes data equivalent to one channel’s data, not the size of the passed in variable (i.e. if you have a 16-bit sample
size and write ((int8_t)-5); write((int8_t)5); you will have written 2 samples to the 12S buffer of whatever
the 128 size, not a single 16-bit sample.

This call will block (wait) until space is available to actually write the data.
10.1.12 size_t write(int32_t val, bool sync)
Writes 32 bits of data to the I2S buffer (regardless of the configured 12S bit size). When sync is true, it will not return

until the data has been writte. When sync is false, it will return ® immediately if there is no space present in the 12S
buffer.

34 Chapter 10. 12S (Digital Audio) Audio Library

Arduino-Pico Documentation, Release 1.0.0

10.1.13 size_t write(const uint8_t *buffer, size t size)

Transfers number of bytes from an application buffer to the I2S output buffer. Be aware that size is in byfes* and not
samples. Size must be a multiple of 4 bytes. Will not block, so check the return value to find out how many bytes were
actually written.

10.1.14 int availableForWrite()

Returns the number of L/R samples that can be written without potentially blocking.

10.1.15 int read()

Reads a single sample of I2S data, whatever the 12S sample size is configured. Will not return until data is available.

10.1.16 int peek()

Returns the next sample to be read from the 12S buffer (without actually removing it).

10.1.17 void onTransmit(void (*fn)(void))

Sets a callback to be called when an I2S DMA buffer is fully transmitted. Will be in an interrupt context so the specified
function must operate quickly and not use blocking calls like delay() or write to the 12S.

10.1.18 void onReceive(void (*fn)(void))

Sets a callback to be called when an 12S DMA buffer is fully read in. Will be in an interrupt context so the specified
function must operate quickly and not use blocking calls like delay() or read from the 12S.

10.2 Sample Writing/Reading API

Because 12S streams consist of a natural left and right sample, it is often convenient to write or read both with a single
call. The following calls allow applications to read or write both samples at the same time, and explicitly indicate the
bit widths required (to avoid potential issues with type conversion on calls).

10.2.1 size_t write8(int8_t |1, int8_tr)

Writes a left and right 8-bit sample to the I12S buffers. Blocks until space is available.

10.2. Sample Writing/Reading API 35

Arduino-Pico Documentation, Release 1.0.0

10.2.2 size t write16(int16_t I, int16_tr)

Writes a left and right 16-bit sample to the I2S buffers. Blocks until space is available.

10.2.3 size t write24(int32_t |, int32_tr)

Writes a left and right 24-bit sample to the 12S buffers. See note below about 24-bit mode. Blocks until space is
available.

10.2.4 size_t write32(int32_t |, int32_tr)

Writes a left and right 32-bit sample to the I2S buffers. Blocks until space is available.

10.2.5 bool read8(int8_t *I, int8_t *r)

Reads a left and right 8-bit sample and returns true on success. Will block until data is available.

10.2.6 bool read16(int16_t *I, int16_t *r)

Reads a left and right 16-bit sample and returns true on success. Will block until data is available.

10.2.7 bool read24(int32_t *I, int32_t *r)

Reads a left and right 24-bit sample and returns true on success. See note below about 24-bit mode. Will block until
data is available.

10.2.8 bool read32(int32_t *I, int32_t *r)

Reads a left and right 32-bit sample and returns true on success. Will block until data is available.

10.3 Note About 24-bit Samples

24-bit samples are stored as left-aligned 32-bit values with bits 7..0 ignored. Only the upper 24 bits 31...8 will be
transmitted or received. The actual I2S protocol will only transmit or receive 24 bits in this mode, even though the data
is 32-bit packed.

36 Chapter 10. 12S (Digital Audio) Audio Library

CHAPTER
ELEVEN

SERIAL PORTS (USB AND UART)

The Arduino-Pico core implements a software-based Serial-over-USB port using the USB ACM-CDC model to support
a wide variety of operating systems.

Serial is the USB serial port, and while Serial.begin() does allow specifying a baud rate, this rate is ignored since
it is USB-based. (Also be aware that this USB Serial port is responsible for resetting the RP2040 during the upload
process, following the Arduino standard of 1200bps = reset to bootloader).

The RP2040 provides two hardware-based UARTS with configurable pin selection.
Seriall is UARTO, and Serial2 is UART1.

Configure their pins using the setXXX calls prior to calling begin()

Seriall.setRX(pin);
Seriall.setTX(pin);
Seriall.begin(baud);

The size of the receive FIFO may also be adjusted from the default 32 bytes by using the setFIFOSize call prior to
calling begin()

The FIFO is normally handled via an interrupt, which reduced CPU load and makes it less likely to lose characters.

For applications where an IRQ driven serial port is not appropriate, use setPollingMode(true) before calling
begin()

For detailed information about the Serial ports, see the Arduino Serial Reference .

37

https://www.arduino.cc/reference/en/language/functions/communication/serial/

Arduino-Pico Documentation, Release 1.0.0

38 Chapter 11. Serial Ports (USB and UART)

CHAPTER
TWELVE

“SOFTWARESERIAL’ PIO-BASED UART

Equivalent to the Arduino SoftwareSerial library, an emulated UART using one or two PIO state machines is included
in the Arduino-Pico core. This allows for up to 4 bidirectional or up to 8 unidirectional serial ports to be run from the
RP2040 without requiring additional CPU resources.

Instantiate a SerialPI0(txpin, rxpin, fifosize) object in your sketch and then use it the same as any other
serial port. Even, odd, and no parity modes are supported, as well as data sizes from 5- to 8-bits. Fifosize, if not
specified, defaults to 32 bytes.

To instantiate only a serial transmit or receive unit, pass in SerialPIO: :NOPIN as the txpin or rxpin.
For example, to make a transmit-only port on GP16 .. code:: cpp
SerialPIO transmitter(16, SerialPIO::NOPIN);

For detailed information about the Serial ports, see the Arduino Serial Reference .

39

https://www.arduino.cc/reference/en/language/functions/communication/serial/

Arduino-Pico Documentation, Release 1.0.0

40 Chapter 12. “SoftwareSerial” PIO-based UART

CHAPTER
THIRTEEN

SOFTWARESERIAL EMULATION

A SoftwareSerial wrapper is included to provide plug-and-play compatibility with the Arduino Software Serial
library. Use the normal #include <SoftwareSerial.h> to include it. The following differences from the Arduino
standard are present:

* Inverted mode is not supported
* All ports are always listening
e listen call is a no-op

¢ isListening() always returns true

41

https://docs.arduino.cc/learn/built-in-libraries/software-serial

Arduino-Pico Documentation, Release 1.0.0

42 Chapter 13. SoftwareSerial Emulation

CHAPTER
FOURTEEN

SERVO LIBRARY

A hardware-based servo controller is provided using the Servo library. It utilizes the PIO state machines and generates
the appropriate servo control pulses, glitch-free and jitter-free (within crystal limits).

Up to 8 Servos can be controlled in parallel assuming no other tasks require the use of a PIO machine.

See the Arduino standard Servo documentation for detailed usage instructions. There is also an included sweep exam-
ple.

43

https://www.arduino.cc/reference/en/libraries/servo/

Arduino-Pico Documentation, Release 1.0.0

44 Chapter 14. Servo Library

CHAPTER
FIFTEEN

SPI (SERIAL PERIPHERAL INTERFACE)

The RP2040 has two hardware SPI interfaces, spi® (SPI) and spil (SPI1). These interfaces are supported by the
SPI library in master mode.

SPI pinouts can be set before SPL.begin() using the following calls:

bool setRX(pin_size_t pin);
bool setCS(pin_size_t pin);
bool setSCK(pin_size_t pin);
bool setTX(pin_size_t pin);

Note that the CS pin can be hardware or software controlled by the sketch. When software controlled, the setCS() call
is ignored.

The Arduino SPI documentation gives a detailed overview of the library, except for the following RP2040-specific
changes:

e SPI.begin(bool hwCS) can take an options hwCS parameter. By passing in true for hwCS the sketch does
not need to worry about asserting and deasserting the CS pin between transactions. The default is false and
requires the sketch to handle the CS pin itself, as is the standard way in Arduino.

* The interrupt calls (usingInterrupt, notUsingInterrupt, attachInterrupt, and detachInterrpt) are
not implemented.

45

https://www.arduino.cc/en/reference/SPI

Arduino-Pico Documentation, Release 1.0.0

46 Chapter 15. SPI (Serial Peripheral Interface)

CHAPTER
SIXTEEN

WIRE (12C MASTER AND SLAVE)

The RP2040 has two I12C devices, i2c® (Wire) and i2cl (Wirel).

The default pins for Wire and Wirel vary depending on which board you’re using. (Here are the pinout diagrams for
Pico and Adafruit Feather.)

You may change these pins before calling Wire.begin() or Wirel.begin() using:

bool setSDA(pin_size_t sda);
bool setSCL(pin_size_t scl);

Be sure to use pins labeled I2C0 for Wire and I2C1 for Wirel on the pinout diagram for your board, or it won’t work.
Other than that, the API is compatible with the Arduino standard. Both master and slave operation are supported.

Master transmissions are buffered (up to 128 bytes) and only performed on endTransmission, as is standard with
modern Arduino Wire implementations.

For more detailed information, check the Arduino Wire documentation .

47

https://datasheets.raspberrypi.org/pico/Pico-R3-A4-Pinout.pdf
https://learn.adafruit.com/assets/100740
https://www.arduino.cc/en/reference/wire

Arduino-Pico Documentation, Release 1.0.0

48 Chapter 16. Wire (I12C Master and Slave)

CHAPTER
SEVENTEEN

FILE SYSTEMS

The Arduino-Pico core supports using some of the onboard flash as a file system, useful for storing configuration data,
output strings, logging, and more. It also supports using SD cards as another (FAT32) filesystem, with an API that’s
compatible with the onboard flash file system.

17.1 Flash Layout

Even though file system is stored on the same flash chip as the program, programming new sketch will not modify file
system contents (or EEPROM data).

The following diagram shows the flash layout used in Arduino-Pico:

A A A

Sketch File system EEPROM

The file system size is configurable via the IDE menus, rom 64k up to 15MB (assuming you have an RP2040 boad with
that much flash)

Note: to use any of file system functions in the sketch, add the following include to the sketch:

#include "LittleFS.h" // LittleFS is declared
// #include <SDFS.h>
// #include <SD.h>

17.2 Compatible Filesystem APIs

LittleFS is an onboard filesystem that sets asidesome program flash for use as a filesystem without requiring any external
hardware.

SDEFS is a filesystem for SD cards, based on [SdFat 2.0](https://github.com/earlephilhower/ESP8266SdFat). It supports
FAT16 and FAT32 formatted cards, and requires an external SD card reader.

SD is the Arduino supported, somewhat old and limited SD card filesystem. It is recommended to use SDFS for new
applications instead of SD.

All three of these filesystems can open and manipulate File and Dir objects with the same code because the implement
a common end-user filesystem API.

49

https://github.com/earlephilhower/ESP8266SdFat

Arduino-Pico Documentation, Release 1.0.0

17.3 LittleFS File System Limitations

The LittleFS implementation for the RP2040 supports filenames of up to 31 characters + terminating zero (i.e. char
filename[32]), and as many subdirectories as space permits.

Filenames are assumed to be in the root directory if no initial “/” is present.

Opening files in subdirectories requires specifying the complete path to the file (i.e. LittleFS.open("/sub/dir/
file.txt", "r");). Subdirectories are automatically created when you attempt to create a file in a subdirectory, and
when the last file in a subdirectory is removed the subdirectory itself is automatically deleted.

17.4 Uploading Files to the LittleFS File System

PicoLittleFS is a tool which integrates into the Arduino IDE. It adds a menu item to Tools menu for uploading the
contents of sketch data directory into a new LittleFS flash file system.

* Download the tool: https://github.com/earlephilhower/arduino-pico-littlefs-plugin/releases
* In your Arduino sketchbook directory, create tools directory if it doesn’t exist yet.

» Unpack the tool into tools directory (the path will look like <home_dir>/Arduino/tools/PicoLittleFS/
tool/picolittlefs. jar) If upgrading, overwrite the existing JAR file with the newer version.

* Restart Arduino IDE.

* Open a sketch (or create a new one and save it).

* Go to sketch directory (choose Sketch > Show Sketch Folder).

* Create a directory named data and any files you want in the file system there.

* Make sure you have selected a board, port, and closed Serial Monitor.

* Double check theSerial Monitor is closed. Uploads will fail if the Serial Monitor has control of the serial port.

e Select Tools > Pico LittleFS Data Upload. This should start uploading the files into the flash file system.

17.5 SD Library Information

The included SD library is the Arduino standard one. Please refer to the [Arduino SD reference](https://www.arduino.
cc/en/reference/SD) for more information.

17.6 File system object (LittleFS/SD/SDFS)

17.6.1 setConfig

LittleFSConfig cfg;
cfg.setAutoFormat (false);
LittleFS.setConfig(cfg);

SDFSConfig c2;
c2.setCSPin(12);
SDFS.setConfig(c2);

50 Chapter 17. File Systems

https://github.com/earlephilhower/arduino-pico-littlefs-plugin/releases
https://www.arduino.cc/en/reference/SD
https://www.arduino.cc/en/reference/SD

Arduino-Pico Documentation, Release 1.0.0

This method allows you to configure the parameters of a filesystem before mounting. All filesystems have their own
*Config (i.e. SDFSConfig or LittleFSConfig with their custom set of options. All filesystems allow explicitly
enabling/disabling formatting when mounts fail. If you do not call this setConfig method before perforing begin(),
you will get the filesystem’s default behavior and configuration. By default, SPIFFS will autoformat the filesystem if
it cannot mount it, while SDFS will not.

17.6.2 begin

SDFS.begin()
or LittleFS.begin()

This method mounts file system. It must be called before any other FS APIs are used. Returns true if file system was
mounted successfully, false otherwise. With no options it will format SPIFFS if it is unable to mount it on the first try.

Note that LittleFS will automatically format the filesystem if one is not detected. This is configurable via setConfig

17.6.3 end

SDFS.end()
or LittleFS.end()

This method unmounts the file system.

17.6.4 format

SDFS. format ()
or LittleFS.format()

Formats the file system. May be called either before or after calling begin. Returns frue if formatting was successful.

17.6.5 open

SDFS.open(path, mode)
or LittleFS.open(path, mode)

Opens a file. path should be an absolute path starting with a slash (e.g. /dir/filename.txt). mode is a string

specifying access mode. It can be one of “r”, “w”, “a”, “r+”, “w+”, “a+”. Meaning of these modes is the same as for
fopen C function.

r Open text file for reading. The stream is positioned at the
beginning of the file.

r+ Open for reading and writing. The stream is positioned at the
beginning of the file.

W Truncate file to zero length or create text file for writing.
The stream is positioned at the beginning of the file.

W+ Open for reading and writing. The file is created if it does

(continues on next page)

17.6. File system object (LittleFS/SD/SDFS) 51

Arduino-Pico Documentation, Release 1.0.0

(continued from previous page)

not exist, otherwise it is truncated. The stream is
positioned at the beginning of the file.

a Open for appending (writing at end of file). The file is
created if it does not exist. The stream is positioned at the
end of the file.

a+ Open for reading and appending (writing at end of file). The
file is created if it does not exist. The initial file
position for reading is at the beginning of the file, but
output is always appended to the end of the file.

Returns File object. To check whether the file was opened successfully, use the boolean operator.

File f = LittleFS.open("/f.txt", "w");
if (1) {

Serial.println("file open failed");
}

17.6.6 exists

SDFS.exists(path)
or LittleFS.exists(path)

Returns true if a file with given path exists, false otherwise.

17.6.7 mkdir

SDFS.mkdir(path)
or LittleFS.mkdir(path)

Returns true if the directory creation succeeded, false otherwise.

17.6.8 rmdir

SDFS.rmdir(path)
or LittleFS.rmdir(path)

Returns true if the directory was successfully removed, false otherwise.

52 Chapter 17.

File Systems

Arduino-Pico Documentation, Release 1.0.0

17.6.9 openDir

SDFS.openDir(path)
or LittleFS.openDir(path)

Opens a directory given its absolute path. Returns a Dir object. Please note the previous discussion on the difference
in behavior between LittleFS and SPIFFS for this call.

17.6.10 remove

SDFS.remove (path)
or LittleFS.remove(path)

Deletes the file given its absolute path. Returns frue if file was deleted successfully.

17.6.11 rename

SDFS.rename (pathFrom, pathTo)
or LittleFS.rename(pathFrom, pathTo)

Renames file from pathFrom to pathTo. Paths must be absolute. Returns frue if file was renamed successfully.

17.6.12 info DEPRECATED

FSInfo fs_info;
or LittleFS.info(fs_info);

Fills FSInfo structure with information about the file system. Returns true if successful, false otherwise. Because
this cannot report information about filesystemd greater than 4MB, don’t use it in new code. Use info64 instead which
uses 64-bit fields for filesystem sizes.

17.7 Filesystem information structure

struct FSInfo {
size_t totalBytes;
size_t usedBytes;
size_t blockSize;
size_t pageSize;
size_t maxOpenFiles;
size_t maxPathLength;

};

This is the structure which may be filled using FS::info method. - totalBytes — total size of useful data on the file
system - usedBytes — number of bytes used by files - blockSize — filesystem block size - pageSize — filesystem
logical page size - maxOpenFiles — max number of files which may be open simultaneously - maxPathLength —
max file name length (including one byte for zero termination)

17.7. Filesystem information structure 53

Arduino-Pico Documentation, Release 1.0.0

17.7.1 info64

FSInfo64 fsinfo;
SDFS.info(fsinfo);
or LittleFS(fsinfo);

Performs the same operation as info but allows for reporting greater than 4GB for filesystem size/used/etc. Should be
used with the SD and SDFS filesystems since most SD cards today are greater than 4GB in size.

17.7.2 setTimeCallback(time_t (*cb)(void))

time_t myTimeCallback() {
return 1455451200; // UNIX timestamp

}
void setup O {
LittleFS.setTimeCallback(myTimeCallback);

// Any files will now be made with Pris' incept date
}

The SD, SDFS, and LittleFS filesystems support a file timestamp, updated when the file is opened for writing. By de-
fault, the Pico will use the internal time returned from time (NULL) (i.e. local time, not UTC, to conform to the existing
FAT filesystem), but this can be overridden to GMT or any other standard you’d like by using setTimeCallback(). If
your app sets the system time using NTP before file operations, then you should not need to use this function. However,
if you need to set a specific time for a file, or the system clock isn’t correct and you need to read the time from an
external RTC or use a fixed time, this call allows you do to so.

In general use, with a functioning time () call, user applications should not need to use this function.

17.8 Directory object (Dir)

The purpose of Dir object is to iterate over files inside a directory. It provides multiple access methods.

The following example shows how it should be used:

Dir dir = LittleFS.openDir("/data");
// or Dir dir = LittleFS.openDir("/data");
while (dir.next()) {
Serial.print(dir.fileName());
if(dir.fileSize()) {
File f = dir.openFile("r");
Serial.println(f.size());

54 Chapter 17. File Systems

Arduino-Pico Documentation, Release 1.0.0

17.8.1 next

Returns true while there are files in the directory to iterate over. It must be called before calling fileName(),
fileSize(), and openFile() functions.

17.8.2 fileName

Returns the name of the current file pointed to by the internal iterator.

17.8.3 fileSize

Returns the size of the current file pointed to by the internal iterator.

17.8.4 fileTime

Returns the time_t write time of the current file pointed to by the internal iterator.

17.8.5 fileCreationTime

Returns the time_t creation time of the current file pointed to by the internal iterator.

17.8.6 isFile

Returns true if the current file pointed to by the internal iterator is a File.

17.8.7 isDirectory

Returns true if the current file pointed to by the internal iterator is a Directory.

17.8.8 openFile

This method takes mode argument which has the same meaning as for SDFS/LittleFS.open() function.

17.8.9 rewind

Resets the internal pointer to the start of the directory.

17.8. Directory object (Dir) 55

Arduino-Pico Documentation, Release 1.0.0

17.8.10 setTimeCallback(time_t (*cb)(void))

Sets the time callback for any files accessed from this Dir object via openNextFile. Note that the SD and SDFS filesys-
tems only support a filesystem-wide callback and calls to Dir: : setTimeCallback may produce unexpected behavior.

17.9 File object

SDFS/LittleFS.open() and dir.openFile() functions return a File object. This object supports all the functions
of Stream, so you can use readBytes, findUntil, parselnt, println, and all other Stream methods.

There are also some functions which are specific to File object.

17.9.1 seek

file.seek(offset, mode)

This function behaves like fseek C function. Depending on the value of mode, it moves current position in a file as

follows:
« if mode is SeekSet, position is set to offset bytes from the beginning.
* if mode is SeekCur, current position is moved by offset bytes.
« if mode is SeekEnd, position is set to offset bytes from the end of the file.

Returns true if position was set successfully.

17.9.2 position

file.position()

Returns the current position inside the file, in bytes.

17.9.3 size

file.size(Q)

Returns file size, in bytes.

17.9.4 name

String name = file.name();

Returns short (no-path) file name, as const char*. Convert it to String for storage.

56

Chapter 17. File Systems

Arduino-Pico Documentation, Release 1.0.0

17.9.5 fullName

// Filesystem:

// testdir/

// filel

Dir d = LittleFS.openDir("testdir/");

File £ = d.openFile("r");

// f.name() == "filel", f.fullName() == "testdir/filel"

Returns the full path file name as a const char¥®.

17.9.6 getLastWrite

Returns the file last write time, and only valid for files opened in read-only mode. If a file is opened for writing, the
returned time may be indeterminate.

17.9.7 getCreationTime

Returns the file creation time, if available.

17.9.8 isFile

bool amIAFile = file.isFile();

Returns true if this File points to a real file.

17.9.9 isDirectory

bool amIADir = file.isDir();

Returns true if this File points to a directory (used for emulation of the SD.* interfaces with the openNextFile method).

17.9.10 close

file.close()

Close the file. No other operations should be performed on File object after close function was called.

17.9.11 openNextFile (compatibiity method, not recommended for new code)

File root = LittleFS.open("/");
File filel root.openNextFile();
File file2 = root.openNextFile();

Opens the next file in the directory pointed to by the File. Only valid when File.isDirectory() == true.

17.9. File object 57

Arduino-Pico Documentation, Release 1.0.0

17.9.12 rewindDirectory (compatibiity method, not recommended for new code)

File root = LittleFS.open("/");

File filel = root.openNextFile();

filel.close(Q);

root.rewindDirectory();

filel = root.openNextFile(); // Opens first file in dir again

Resets the openNextFile pointer to the top of the directory. Only valid when File.isDirectory() == true.

17.9.13 setTimeCallback(time_t (*cb)(void))

Sets the time callback for this specific file. Note that the SD and SDFS filesystems only support a filesystem-wide
callback and calls to Dir: : setTimeCallback may produce unexpected behavior.

58 Chapter 17. File Systems

CHAPTER
EIGHTEEN

USB (ARDUINO AND ADAFRUIT_TINYUSB)

Two USB stacks are present in the core. Users can choose the simpler Pico-SDK version or the more powerful Adafruit
TinyUSB library. Use the Tools->USB Stack menu to select between the two.

18.1 Pico SDK USB Support

This is the default mode and automatically includes a USB-based serial port, Serial as well as supporting automatic
reset-to-upload from the IDE.

The Arduino-Pico core includes ported versions of the basic Arduino Keyboard and Mouse libraries. These libraries
allow you to emulate a keyboard or mouse with the Pico in your sketches.

See the examples and Arduino Reference at https://www.arduino.cc/reference/en/language/functions/usb/keyboard/
and https://www.arduino.cc/reference/en/language/functions/usb/mouse

18.2 Adafruit TinyUSB Arduino Support

Examples are provided in the Adafruit_ TinyUSB_Arduino for the more advanced USB stack.

To use Serial with TinyUSB, you must include the TinyUSB header in your sketch to avoid a compile error.

#include <Adafruit_TinyUSB.h>

If you need to be compatible with the other USB stack, you can use an ifdef:

#1ifdef USE_TINYUSB
#include <Adafruit_TinyUSB.h>
#endif

Also, this stack requires sketches to manually call Serial.begin(115200) to enable the USB serial port and auto-
matic sketch upload from the IDE. If a sketch is run without this command in setup(), the user will need to use the
standard “hold BOOTSEL and plug in USB” method to enter program upload mode.

59

https://www.arduino.cc/reference/en/language/functions/usb/keyboard/
https://www.arduino.cc/reference/en/language/functions/usb/mouse

Arduino-Pico Documentation, Release 1.0.0

60 Chapter 18. USB (Arduino and Adafruit_TinyUSB)

CHAPTER
NINETEEN

MULTICORE PROCESSING

The RP2040 chip has 2 cores that can run independently of each other, sharing peripherals and memory with each
other. Arduino code will normally execute only on core 0, with the 2nd core sitting idle in a low power state.

By adding a setup1() and loop1() function to your sketch you can make use of the second core. Anything called
from within the setupl() or loopl () routines will execute on the second core.

setup() and setupl() will be called at the same time, and the 1loop() or loopl() will be started as soon as the
core’s setup () completes (i.e. not necessarily simultaneously!).

See the Multicore.ino example in the rp2040 example directory for a quick introduction.

19.1 Pausing Cores

Sometimes an application needs to pause the other core on chip (i.e. it is writing to flash or needs to stop processing
while some other event occurs).

19.1.1 void rp2040.idleOtherCore()

Sends a message to stop the other core (i.e. when called from core 0 it pauses core 1, and vice versa). Waits for the
other core to acknowledge before returning.

The other core will have its interrupts disabled and be busy-waiting in an RAM-based routine, so flash and other
peripherals can be accessed.

NOTE If you idle core 0 too long, then the USB port can become frozen. This is because core 0 manages the USB and
needs to service IRQs in a timely manner (which it can’t do when idled).

19.1.2 void rp2040.resumeOtherCore()

Resumes processing in the other core, where it left off.

61

Arduino-Pico Documentation, Release 1.0.0

19.1.3 void rp2040.restartCore1()

Hard resets Corel from Core 0 and restarts its operation from setup1().

19.2 Communicating Between Cores

The RP2040 provides a hardware FIFO for communicating between cores, but it is used exclusively for the idle/resume
calls described above. Instead, please use the following functions to access a software-managed, multicore safe FIFO.

19.2.1 void rp2040.fifo.push(uint32_t)

Pushes a value to the other core. Will block if the FIFO is full.

19.2.2 bool rp2040.fifo.push_nb(uint32_t)

Pushes a value to the other core. If the FIFO is full, returns false immediately and doesn’t block. If the push is
successful, returns true.

19.2.3 uint32_t rp2040.fifo.pop()

Reads a value from this core’s FIFO. Blocks until one is available.

19.2.4 bool rp2040.fifo.pop_nb(uint32_t *dest)

Reads a value from this core’s FIFO and places it in dest. Will return true if successful, or false if the pop would
block.

19.2.5 int rp2040.fifo.available()

Returns the number of values available in this core’s FIFO.

62 Chapter 19. Multicore Processing

CHAPTER
TWENTY

FREERTOS SMP

The SMP (multicore) port of FreeRTOS is included with the core. This allows complex task operations and real
preemptive multithreading in your sketches. While the setupl and loopl way of multitasking is simplest for most
folks, FreeRTOS is much more powerful.

20.1 Enabling FreeRTOS

To enable FreeRTOS, simply add

#include <FreeRTOS.h>

to your sketch and it will be included and enabled automatically.

20.2 Configuration and Predefined Tasks

FreeRTOS is configured with 8 priority levels (0 through 7) and a process for setup () /loop(), setupl()/loopl(),
and the USB port will be created. The task quantum is 1 millisecond (i.e. 1,000 switches per second).

setup() and loop() are assigned to only run on core 0, while setup1() and loop1() only run in core 1 in this
mode, the same as the default multithreading mode.

You can launch and manage additional processes using the standard FreeRTOS routines.

delay () and yield() free the CPU for other tasks, while delayMicroseconds () does not.

20.3 Caveats

While the core now supports FreeRTOS, most (probably all) Arduino libraries were not written to support preemptive
multithreading. This means that all calls to a particular library should be made from a single task.

In particular, the Litt1leFS and SDFS libraries can not be called from different threads. Do all File operations from
a single thread or else undefined behavior (aka strange crashes or data corruption) can occur.

63

Arduino-Pico Documentation, Release 1.0.0

20.4 More Information

For full FreeRTOS documentation look at FreeRTOS.org and FreeRTOS SMP support.

64 Chapter 20. FreeRTOS SMP

https://freertos.org/index.html
https://freertos.org/symmetric-multiprocessing-introduction.html

CHAPTER
TWENTYONE

LIBRARIES PORTED/OPTIMIZED FOR THE RP2040

Most Arduino libraries that work on modern 32-bit CPU based Arduino boards will run fine using Arduino-Pico.

The following libraries have undergone additional porting and optimizations specifically for the RP2040 and you should
consider using them instead of the generic versions available in the Library Manager

» Adafruit GFX Library by @Bodmer, 2-20x faster than the standard version on the Pico
e Adafruit ILI9341 Library again by @Bodmer
» ESP8266Audio ported to use the included I2S library

65

https://github.com/Bodmer/Adafruit-GFX-Library
https://github.com/Bodmer/Adafruit_ILI9341
https://github.com/earlephilhower/ESP8266Audio

Arduino-Pico Documentation, Release 1.0.0

66 Chapter 21. Libraries Ported/Optimized for the RP2040

CHAPTER
TWENTYTWO

USING THE RASPBERRY PI PICO SDK (PICO-SDK)

22.1 Included SDK

A complete copy of the Raspberry Pi Pico SDK is included with the Arduino core, and all functions in the core are
available inside the standard link libraries.

For simple programs wishing to call these functions, simply include the appropriate header as shown below

#include "pico/stdlib.h"

void setup() {
const uint LED_PIN = 25;
gpio_init(LED_PIN);
gpio_set_dir(LED_PIN, GPIO_OUT);
while (true) {
gpio_put (LED_PIN, 1);
sleep_ms(250);
gpio_put(LED_PIN, 0);
sleep_ms(250);
}
}
void loop() {}

Note: When you call SDK functions in your own app, the core and libraries are not aware of any changes to the Pico
you perform. So, you may break the functionality of certain libraries in doing so.

22.2 Multicore (CORE1) Processing

Warning: While you may spawn multicore applications on CORE1 using the SDK, the Arduino core may have issues
running properly with them. In particular, anything involving flash writes (i.e. EEPROM, filesystems) will probably
crash due to COREI attempting to read from flash while COREQ is writing to it.

67

https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-c-sdk.pdf

Arduino-Pico Documentation, Release 1.0.0

22.3 PIOASM (Compiling for the PIO processors)

A precompiled version of the PIOASM tool is included in the download package and can be run from the CLL

There is also a fully online version of PIOASM that runs in a web browser without any CLI required, thanks to
@jake653: https://wokwi.com/tools/pioasm (GitHub source: https://github.com/wokwi/pioasm-wasm)

There is also Docker code available for the tool at: https://github.com/kahara/pioasm-docker

68 Chapter 22. Using the Raspberry Pi Pico SDK (PICO-SDK)

https://wokwi.com/tools/pioasm
https://github.com/wokwi/pioasm-wasm
https://github.com/kahara/pioasm-docker

CHAPTER
TWENTYTHREE

LICENSING AND CREDITS

Arduino-Pico is licensed under the LGPL license as detailed in the included README.

In addition, it contains code from additional open source projects:

The Arduino IDE and ArduinoCore-API are developed and maintained by the Arduino team. The IDE is licensed
under GPL.

The RP2040 GCC-based toolchain is licensed under under the GPL.

The Pico-SDK and Pico-Extras are by Raspberry Pi (Trading) Ltd. and licensed under the BSD 3-Clause license.
Arduino-Pico core files are licenses under the LGPL.

LittleFS library written by ARM Limited and released under the BSD 3-clause license .

UF2CONV.PY is by Microsoft Corporatio and licensed under the MIT license.

Some filesystem code taken from the ESP8266 Arduino Core and licensed under the LGPL.

69

https://arduino.cc
https://github.com/earlephilhower/pico-quick-toolchain
https://github.com/raspberrypi/pico-sdk
https://github.com/raspberrypi/pico-extras
https://github.com/earlephilhower/arduino-pico
https://github.com/ARMmbed/littlefs
https://github.com/ARMmbed/littlefs/blob/master/LICENSE.md
https://github.com/microsoft/uf2
https://github.com/esp8266/Arduino

	Getting Help and Contributing
	Installation
	Installing via Arduino Boards Manager
	Installing via GIT
	Installing both Arduino and CMake
	Uploading Sketches
	Windows 7 Driver Notes
	Windows 7 Installation Problems
	Uploading Filesystem Images
	Uploading Sketches with Picoprobe
	Uploading Sketches with pico-debug
	Debugging with Picoprobe/pico-debug, OpenOCD, and GDB

	IDE Menus
	Model
	Flash Size
	CPU Speed
	Debug Port and Debug Level
	Generic RP2040 Support
	Boot Stage 2 Options for Generic RP2040

	Using this core with PlatformIO
	What is PlatformIO?
	Current state of development
	Deprecation warnings
	Selecting the new core
	Flash size
	CPU Speed
	Debug Port
	Debug Level
	C++ Exceptions
	Stack Protector
	RTTI
	USB Stack
	Selecting a different core version
	Examples
	Debugging
	Filesystem Uploading

	Pin Assignments
	I2S
	Serial1 (UART0), Serial2 (UART1)
	SPI (SPI0), SPI1 (SPI1)
	Wire (I2C0), Wire1 (I2C1)

	Pad Strength
	Analog I/O
	Analog Input
	int analogRead(pin_size_t pin = A0..A3)
	void analogReadResolution(int bits)
	float analogReadTemp()

	Analog Outputs
	Analog Output Restrictions
	void analogWriteFreq(uint32_t freq)
	void analogWriteRange(uint32_t range) and analogWriteResolution(int res)
	void analogWrite(pin_size_t pin, int val)

	Digital I/O
	Board-Specific Pins
	Tone/noTone

	EEPROM Library
	EEPROM Class API
	EEPROM.begin(size=256…4096)
	EEPROM.read(addr), EEPROM[addr]
	EEPROM.write(addr, data), EEPROM[addr] = data
	EEPROM.commit()
	EEPROM.end()
	EEPROM.get(addr, val)
	EEPROM.put(addr, val)
	EEPROM.length()

	EEPROM Examples

	I2S (Digital Audio) Audio Library
	I2S Class API
	I2S(OUTPUT)
	I2S(INPUT)
	bool setBCLK(pin_size_t pin)
	bool setDATA(pin_size_t pin)
	bool setBitsPerSample(int bits)
	bool setBuffers(size_t buffers, size_t bufferWords, int32_t silenceSample = 0)
	bool setFrequency(long sampleRate)
	bool begin()/begin(long sampleRate)
	void end()
	void flush()
	size_t write(uint8_t/int8_t/int16_t/int32_t)
	size_t write(int32_t val, bool sync)
	size_t write(const uint8_t *buffer, size_t size)
	int availableForWrite()
	int read()
	int peek()
	void onTransmit(void (*fn)(void))
	void onReceive(void (*fn)(void))

	Sample Writing/Reading API
	size_t write8(int8_t l, int8_t r)
	size_t write16(int16_t l, int16_t r)
	size_t write24(int32_t l, int32_t r)
	size_t write32(int32_t l, int32_t r)
	bool read8(int8_t *l, int8_t *r)
	bool read16(int16_t *l, int16_t *r)
	bool read24(int32_t *l, int32_t *r)
	bool read32(int32_t *l, int32_t *r)

	Note About 24-bit Samples

	Serial Ports (USB and UART)
	“SoftwareSerial” PIO-based UART
	SoftwareSerial Emulation
	Servo Library
	SPI (Serial Peripheral Interface)
	Wire (I2C Master and Slave)
	File Systems
	Flash Layout
	Compatible Filesystem APIs
	LittleFS File System Limitations
	Uploading Files to the LittleFS File System
	SD Library Information
	File system object (LittleFS/SD/SDFS)
	setConfig
	begin
	end
	format
	open
	exists
	mkdir
	rmdir
	openDir
	remove
	rename
	info DEPRECATED

	Filesystem information structure
	info64
	setTimeCallback(time_t (*cb)(void))

	Directory object (Dir)
	next
	fileName
	fileSize
	fileTime
	fileCreationTime
	isFile
	isDirectory
	openFile
	rewind
	setTimeCallback(time_t (*cb)(void))

	File object
	seek
	position
	size
	name
	fullName
	getLastWrite
	getCreationTime
	isFile
	isDirectory
	close
	openNextFile (compatibiity method, not recommended for new code)
	rewindDirectory (compatibiity method, not recommended for new code)
	setTimeCallback(time_t (*cb)(void))

	USB (Arduino and Adafruit_TinyUSB)
	Pico SDK USB Support
	Adafruit TinyUSB Arduino Support

	Multicore Processing
	Pausing Cores
	void rp2040.idleOtherCore()
	void rp2040.resumeOtherCore()
	void rp2040.restartCore1()

	Communicating Between Cores
	void rp2040.fifo.push(uint32_t)
	bool rp2040.fifo.push_nb(uint32_t)
	uint32_t rp2040.fifo.pop()
	bool rp2040.fifo.pop_nb(uint32_t red*dest)
	int rp2040.fifo.available()

	FreeRTOS SMP
	Enabling FreeRTOS
	Configuration and Predefined Tasks
	Caveats
	More Information

	Libraries Ported/Optimized for the RP2040
	Using the Raspberry Pi Pico SDK (PICO-SDK)
	Included SDK
	Multicore (CORE1) Processing
	PIOASM (Compiling for the PIO processors)

	Licensing and Credits

